Emerging role of SGT1 as a regulator of NB-LRR-receptor nucleocytoplasmic partitioning
نویسندگان
چکیده
Plant nucleotide-binding (NB) and leucine-rich repeat (LRR) receptors mediate effector-triggered immunity. Two major classes of NB-LRR proteins are involved in this process, namely, toll-interleukin receptor (TIR)-NB-LRR and coiled coil (CC)-NB-LRR proteins. Recent reports show that some of the TIR-NB-LRRs and CC-NB-LRRs localize to the cytoplasm and nucleus. Equilibrium between these pools is required for full resistance, suggesting tight regulation of nucleocytoplasmic receptor shuttling. We recently showed that SGT1, a protein that controls NB-LRR receptor stability and activity, facilitates nuclear import of N protein, which is a TIR-NB-LRR receptor. In this addendum, we show that the subcellular localization of Rx, a CC-NB-LRR protein, reflects the positions of SGT1 ectopic variants in the cell. This suggests that SGT1 might have a general role in maintaining the nucleocytoplasmic balance of NB-LRR receptors. We discuss these results in light of differences in the N and Rx systems of effector-triggered immunity.
منابع مشابه
Nucleocytoplasmic distribution is required for activation of resistance by the potato NB-LRR receptor Rx1 and is balanced by its functional domains.
The Rx1 protein, as many resistance proteins of the nucleotide binding-leucine-rich repeat (NB-LRR) class, is predicted to be cytoplasmic because it lacks discernable nuclear targeting signals. Here, we demonstrate that Rx1, which confers extreme resistance to Potato virus X, is located both in the nucleus and cytoplasm. Manipulating the nucleocytoplasmic distribution of Rx1 or its elicitor rev...
متن کاملSRFR1 Negatively Regulates Plant NB-LRR Resistance Protein Accumulation to Prevent Autoimmunity
Plant defense responses need to be tightly regulated to prevent auto-immunity, which is detrimental to growth and development. To identify negative regulators of Resistance (R) protein-mediated resistance, we screened for mutants with constitutive defense responses in the npr1-1 background. Map-based cloning revealed that one of the mutant genes encodes a conserved TPR domain-containing protein...
متن کاملSpecific Arabidopsis HSP90.2 alleles recapitulate RAR1 cochaperone function in plant NB-LRR disease resistance protein regulation.
Both plants and animals require the activity of proteins containing nucleotide binding (NB) domain and leucine-rich repeat (LRR) domains for proper immune system function. NB-LRR proteins in plants (NLR proteins in animals) also require conserved regulation via the proteins SGT1 and cytosolic HSP90. RAR1, a protein specifically required for plant innate immunity, interacts with SGT1 and HSP90 t...
متن کاملSpecific Missense Alleles of the Arabidopsis Jasmonic Acid Co-Receptor COI1 Regulate Innate Immune Receptor Accumulation and Function
Plants utilize proteins containing nucleotide binding site (NB) and leucine-rich repeat (LRR) domains as intracellular innate immune receptors to recognize pathogens and initiate defense responses. Since mis-activation of defense responses can lead to tissue damage and even developmental arrest, proper regulation of NB-LRR protein signaling is critical. RAR1, SGT1, and HSP90 act as regulatory c...
متن کاملNuclear Accumulation of the Arabidopsis Immune Receptor RPS4 Is Necessary for Triggering EDS1-Dependent Defense
Recognition of specific pathogen molecules inside the cell by nucleotide-binding domain and leucine-rich repeat (NB-LRR) receptors constitutes an important layer of innate immunity in plants. Receptor activation triggers host cellular reprogramming involving transcriptional potentiation of basal defenses and localized programmed cell death. The sites and modes of action of NB-LRR receptors are,...
متن کامل